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Abstract

A new software tool, Caesy, is described. This tool
provides a strongly typed programming environment
for research in the development of algorithms and soft-

ware for computer-aided control system design. A de-
scription of the user language and its implementation
as they currently stand are presented along with a de-
scription of work in progress and areas of future work.

Introduction

Over the past few decades, control system design
and analysis has become more and more dependent
on computers. With the availability of more powerful
hardware has come the demand for more performance.
Computer-aided control system design tools such as
Matlab have been used with some success in control

system design since the early 1980's. However, many
workers in the development of software and algorithms
for control system design have recognized that these
tools have limits in both flexibility and efficiency. The
forces driving the development of new tools include the
desire to make complex system modeling, design and
analysis easier; the need for quicker turnaround time in
analysis and design; the desire to make use of advanced

computer architectures to help in control system de-
sign; the desire to adopt new methodologies in con-
trol; and the desire to integrate design processes (e.g.,
structure, control, optics). We have developed Caesy
(Computer-Aided Engineering SYstem) as a means to-
ward discovering how these desires can best be satisfied.
The first Matlab-type environment for matrix manipu-
lation, called MATLAB, was developed by Clave Meier
in the late 1970's, mostly at the University of New Mex-
ico, with support from the National Science Founda-
tion. Several other Matlab-based environments have

been produced for control system design since then.
Included in this group of control system design tools
is Ctrl-C from Systems Control Technology, Matrixx

from Integrated Systems, Inc. (ISI), Pro-Matlab from
the MathWorks, Inc., Mat/C developed at Lawrence
Livermore National Laboratory, and SFPACK devel-
oped at the University of Waterloo. In this document

we will collectively refer to these MATLAB-based envi-

ronments as Matlab. A new-generation Mallab pack-
age has been released from ISI. This package, called
Xmath, seems to provide some features for easier use
but does not. offer all the features we feel are desirable.

The success of Matlab as an environment for the design
and application of algorithms for control system design
implies that. a new tool geared toward large order, com-
plex problems should include capabilities provided by
Matlab and attempt to maintain in some sense the "fla-
vor" of Matlab.

In the development of Caesy, our goal has been to
provide a more advanced environment, which can pro-
vide the capabilities provided by these packages, but
can also provide alternatives to better handle the prob-

lems encountered when problems become complex or
the system order creates computational bottlenecks.
More discussion on the requirements driving the de-
velopment of Caesy can be found in [1]. Our approach
to solving the complexity problem will be to develop

an "object-oriented" user interface (e.g., typed vari-
ables and overloaded functions and operators). Our
approach to the computational problems will be to take
advantage of this interface to develop specialized soft-

ware which can take advantage of any special structure
in the models (e.g., symmetry, bandedness, sparseness).

In this paper we will provide an overview of the cur-

rent capabilities and implementation of Caesy, the work
currently in progress, and work planned for the future.

Current Implementation of Caesy

In this section, we give an overview of Caesy and
some of its features. Caesy is, in a concise description,
a mix between Matlab and Ada. Caesy contains many
of the constructs of Ada but adds features from Matlab

and whatever other modifications we felt were needed

to provide the required functionality. Ada was chosen
as a primary influence because it provides many of the

features required and has a procedural syntax familiar
to many Matlab users. In addition, the syntax used in

the Caesy language is close to that being encouraged
as an IFAC and lEEEstandard (see [2]).
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Caesy is an interactive shell and thus processes user

input on a command by command basis. The prompt

'caesy>' shown below implies that the input is at the

top level of the shell. Caesy is not case sensitive, so

'abe', 'ABC', 'Abe' and 'abC' are all equivalent. Inter-

nally, Caesy treats all symbols as lowercase. Imaginary

constants, used heavily in control system analysis, are

input using a real constant with a trailing 'i', 'I', 'j'

or 'J' (e.g., i.0i, 1.0J).

Types in Caesy

Probably the most striking difference between Caesy

and other Matlab environments is the fact that, Caesy

is a typed language. That is, in Caesy all variables have

type (e.g., integer, real, string) whereas in Matlab all

variables typically have no type (i.e., all variables are

the same type, Matrix). The addition of types to a

language adds possibilities for making more powerful

tools, but may place a burden on the user for declaring

types.

In Caesy, we use types but put minimal requirements

on users to declare variable types. The only place one is

strictly required to declare variable types is when they

appear as formal arguments in function and procedure

declarations. Otherwise, the type of a new variable

(implied by an assignment statement) can be synthe-

sized from the type of the right hand side expression in

the assignment. For example, in the statement

caesy> abe := 3 + 4;

the right hand side has type integer so if abe was not

previously declared, Caesy automatically declares the

variable abe and gives it type integer.

Explicit type conversion in Caesy is performed, by

convention, by declaring a function with the type name.

For example, a function to explicitly convert integers
to real is declared as

function real(i: integer) return x: real;

and then used, for example, as

x := sqrt(real(2)) ;

Statements

Caesy supports many of the statements and control

structures found in Ada with the multiple assignment

form taken from Matlab.

Assisnment Statements

Assignment statements take the normal form as well

as the multiple assignment form familiar to Matlab

users. Here are examples of the two forms:

caesy> abc := 3 + 4;

caesy> { x, y, z } := fern(abe, 3.0);

One of tile statement terminators ';' or '?' is required

in Caesy. Just hitting the return key will not do. The

'?' implies that the result of the assignment should be

displayed to the user:

caesy> abe := 3 + 4?
abe := 7;

If an expression ezpr appears alone on file command

line, an implied assignment, of the form

'_a_as_lype-name := expr?"

is interpreted. For example:

caesy> 3 + 4;

_arts_integer := 7;

Flow Control Statements

Control constructs allow the programmer to do

branching and looping. In Caesy, the if-then branching

is similar to many languages. An example is

if i < 0 then

j := 1;
elsif i = 0 then

j := O;
else

j := I;

end if ;

Looping in Caesy is reasonably flexible. There are for-

loops, while-loops, etc. Some examples are

for i in I..3 loop j :-- 3*j; end loop;

while j < 30 loop j := 3*j; end loop;

loop j := 3*j; exit when j >= 30; end loop;

User-Defined Subprograms
Subprograms in Caesy take the form of flmctions and

procedures. (Matlab has no procedures). The following

is an example of a user-defined function definition.

function myabs(i: integer) return j : integer is

begin

if i < 0 then j:= -i; else j:- i; end if;

return ;

end myabs ;

An example of a procedure defiuition is the following:

procedure swap(x, y: in out real) is

temp: real; -- declaration optional!

begin

temp := x; x := y; y := temp;

return;

end swap ;

Overloading Functions

One important feature needed in design interfaces

for handling complexity is overloading functions and

operators. Overloading allows a user to write functions

of the same name and purpose to operate on different

object types. For example, we could define a function

myabs similar to the one above, but which operates on

reals.
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function myabs(x: real) return y: real is

begin

if x < 0 then y := -x; else y := x; end if;

return ;

end myabs ;

Function overloading is very handy in control system

analysis. For example, one could use the expression

freq(G) to produce a frequency response plot whether

G represents a transfer function in state-space form,

rational form, or anything else. In each case, a different

function would be called depending on the argument

type.

Caesy does not overload the return argument(s) of

a function as Ada does. This is difficult to imple-

ment, would prohibit the ability to synthesize expres-

sion types and hence would require users to type-

declare all variables (see above).

Overloading Operators

Caesy also provides the capability to overload most

operators. Operator overloading allows users to over-

load operations such as 'A+B' where A and B have user-

defined types. For example, given two transfer func-

tions G1 and (;2 in state-space form or rational form,

we could overload the operator '+' to compute a trans-

fer function in state space form for the parallel con-

nection of two transfer functions. The declarations of

these functions in Caesy would look like

function "+"(GI: st_sp; G2: st_sp)

return (;: st_sp;

function "+"(GI: rat; (;2: rat)

return G: st_sp;

function "+"(GI: st_sp; G2: rat)

return G: st_sp;

function "+"(GI: rat; (;2: st_sp)

return G: st_sp,

If G1 and G2 were two transfer functions in either state

space (st_sp) form or rational (rat) form, the expres-

sion GI+G2 would produce a state space representation

of the transfer function. An alternative to the expres-

sion GI+G2 is the explicit function call "+"(G1 ,G2).

Default Input Arguments

Users of Matlab are accustomed to a variable number

of input arguments. In the case where input arguments

are not given, default arguments must be supplied in

tile subprogram declaration. In Caesy, a user need not

specify all input arguments if default arguments are

given in the subprogram declaration. For example, tlle

following function declaration fragment contains a de-

fault input argument:

function abe(x: real; y: real := ydef)

Tile function could be referenced, for example, as

abc(xl, yi) or as abc(xl). In the latter case, the

value of the global variable ydef would be used for the

second argument. In Matlab, unspecified inputs are

handled within the function body. In Caesy, the user

can change the default input variable, and hence the

behavior of the function, at any time.

Variable Number of Output Arguments

Caesy supports definition of functions wilh more

than one output argument. In this case, if the function

is used in a simple expression, only the first argument

is referenced. In the case of a multiple-return assign-

ment (see above), one or more return arguments may

be referenced. In the function body, usage of return

arguments can be determined via the 'argused' opera-

tor. For example, consider the following fimction which

echoes its input arguments:

function echo(if: integer; i2: integer)

return { jl: integer; j2: integer } is

begin

jl := il;

if argused j2 then j2 := i2; end if;

return ;

end echo ;

Procedures

In Caesy, users may define functions and procedures.

Caesy was provided with the ability to define proce-

dures for reasons of efficiency. Procedures allow one

to modify variables without creating a duplicate tem-

porary variable. For example, supposc one wanted to

write a function to perform a rank-one change on a

matrix. This could be done with a function callof the

form

A = rankfctn(A, x);

or with the procedure

rankproc(l, x) ;

The difference here is that the function rankfctn will

create a copy of the matrix A to modify and return,

and then A willbe replaced with this matrix. The pro-

cedure will never create the copy of the matrix A. If

the matrix happened to be large, the execution speed

between the functional form and procedural form could

be quite noticeable.

Packages
Several Matlab-type packages use the convention of

collecting related script filestogether to form "tool-

boxes." Caesy formalizes this convention by using tile

Ada "package" construct. In Caesy, type definitions,

functions, procedures and global variables can be col-

lected together in packages. In Matlab, there is no

clean way to distinguish between two different fi,nc-

tions of the same name in two differenttoolboxes. This

can lead to severe problems and requires that users and

toolbox developers take care to avoid the "name-clash"

problem. In Caesy, this problem can be avoided easily.
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If a user wishes to explicitly refer to an object in one

package when there may be a conflict, tile user affixes
the object name to the specific package name (a con-
cept borrowed from Ada). For example, to explicitly
reference the function xyz from the package mypckg,
one would use the construct mypckg, xyz (args).

Matrix Expressions
The ability to create and manipulate matrices is of

fundamental importance in control system engineering.

In Caesy, matrix expressions, those expressions used for
constructing matrices from their parts, are supported
in a unique way. An example of a matrix expression is
the following:

I := [ 1.1, 1.2; 2.1, 2.2];

This is a two-by-two real matrix. In Caesy, the type
for this matrix is 'ReGeHat', for Real General Matrix.

Complex matrices have type 'CoGeNat'.

C := [ 1.0 + O.li, 1.2; 2.1i, 2.2];

In the future, we plan to have special support for sym-

metric and Hermitian matrices, sparse matrices, etc. In
Caesy, matrices are constructed using overloaded oper-
ators. The above expression for defining 'l' gets inter-
nally translated, in essence, to the following sequence
of calls:

T0vl := "["(1.1);
TOv2 := ","(TOvl, 1.2);
TOy3 := ";"(TOy2, 2.1);

TOy4 := ","(TOy3, 2.2);
A := "]"(T0v4, 2.2);

The variables starting with T are temporary variables
created by Caesy. When Caesy sees the first '1.1'
it looks for the function "[" which takes a real ar-
gument. (There are also "[" functions defined which
take an integer or a complex value as the first argu-
ment.) In the Caesy MATMATHpackage, this function

is defined, and returns a special type, regematlist,
for matrix expressions. When the token '1.2' is seen,
Caesy looks for a function "," which takes arguments
of type regematlist and real. The process continues

until the function "]" taking a regematlist and re-
turning a regemat is called. By implementing matrix
expressions with overloaded operators, we have made

the matrix expression construct potentially usable in
very creative ways.

Support of Constructors and Destructors
In Caesy, if a procedure of the form

procedure constructor(vble: in out Type)

exists for some variable of type ObjType, then that pro-
cedure will be called automatically when the variable
comes into scope. Additionally, if a procedure of the
form

procedure destructor(vble: in out ObjType)

exists for some variable of type ObjType, then that pro-
cedure will be called automatically when the variable
comes into scope.

Implementation

Caesy is written primarily in C. The internal struc-
ture is shown in Figure 1. It includes a supervisor to
prompt for input, a parser, written in YACC, a byte-
code compiler, a byte-code interpreter, a C code com-

piler, a context (variable, types, etc.) handling module
(made of CX/Sys-Ctxt blocks in the figure), an input
output interface, and more. The parser outputs LTU
(language transfer utility) codes which can be compiled
into byte-codes or C code.

Work in Progress
In this section we discuss features which are par-

tially implemented or are in the process of being im-
plemented.

User Defined Structured Data Types
Caesy will have the capability for the user to define

structured (i.e.; record) data types. This is an essential
feature needed in the reduction of complexity.

Exception Handling
Currently, Caesy has some support of exception han-

dling. Internally, every Caesy fimction returns an ex-
ception code to its-caller. If the function executes
normally, it returns the exception code N0_ERROR. On

the other hand if some anomaly occurs, a different ex-
ception will be raised. For example, if one tries to

take the square root of a negative (real) number, a
NUMERIC_ERROR exception will be raised. Caesy will
trap machine exceptions. If a divide-by-zero occurs, a
NUMERICERROR will be raised. The exception will be

passed until it gets to the supervisor level. For exam-
ple,

caesy> a := sqrt(-9.0);
Supervisor caught NUMERIC_ERROR exception.

caesy>

This capability will be extended to allow exceptions to
be handled in user-defined functions.

Data Files

Users often have the desire to store and retrieve data.

In Caesy, data files will have special binary formats and
store data in a machine-independent form. The data
files will support uset_-_defined types and hence, must
be quite flexible. The stored data files will make use of

the Sun XDR (external data representation) [3].
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Code Generation

Caesy allows users to generate C code from their sub-
program scripts. For example, for the following code
segment, Caesy will produce the C code shown in Fig-
ure 2.

use matmath ;
function test(A: regemat; B: regemat)

return C: regemat is

begin

for i in I..10 loop
C := A*B - B,A;

end loop ;
c := [c ; [A, B] ];
return ;

end test ;

Tile C coding capability also makes tile prospect of
developing stand-alone programs attractive. An often-
used application could be converted to C-code and com-
piled to run as a specialized program, making it more
efficient. This feature also has the potential of allow-

ing users to change a routine to make it as efficient as
possible. In all, this is a very desirable feature.

Remote Computing
There Is currently work in progress by another team

at JPL; the team is implementing a remote computing
capability in Caesy. This is being developed using Sun

RPC calls [3].

Matrix Computations
Many of the_matrix computations in Caesy are per-

formed using BLAS and LAPACK [4]. These are state-

of-the-art FORTRAN libraries in computing solutions to
linear equations and computing eigenvalue decomposi-
tions. In fact, Caesy could be viewed as a user-friendly
interface to LAPACK and, with Caesy's C code com-
piler, Caesy may be an attractive way to develop code
based on both these routines.

Ful ure \Vork

In this section we discuss features which are under

consideration for future implementations. One object
of the Caesy project is to determine what features in an
interactive shell are needed for handling large, complex

problems.

Function and Operator "Ta_;_;in_;"
The semantics of creating matrices using the '[', ',',

';' and "1' operators have a drawback. It may be nice
to be able to use the construct to input, for example,
sparse matrices. A sparse matrix could be input as

Asp := [ 1,1,1.1; 2,1,2.1 ];

where 1, 1, 1.1 indicates the element in row 1, col-
umn 1, is 1.1 and so on. This type of flexibility cannot,

be supported by the current semantics of tile language.
There is no way that Caesy knows thai a sparse ma-
trix definition is intended. One work-around could be

to "tag" the first value with an explicit type cast:

Asp := [ spmatelt(1,1,1.1); 2,1,2.1 ];

tlere we have a special "sparse matrix element" type
that tags the first element to allow Caesy to find tile
function "[", which takes a sparse matrix element type.

Another work-around, which would provide more

flexibility to the Caesy language overall, would be to
add tagged functions and operators to Caesy. In this
option, function and operators could have tags to in-
dicate that special operators should be used. The tag
would take the special form function: tag in both its
declaration and use. The tagging approach would al-
low the user to use the following to genera(e a sparse

matrix (of type ReSpMat):

Asp := [:sp 1 1, 1.1; 2, 1, 2.1 ];

The declaration for the operator [ may have been
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#include "kc.h"

kcXcode

_Ul_ltest(

MATMATH_regemat* a,

MATMATH_regemat* b,

MATMATH_regemat* c)

MATMATH_regemat T1vO ;

MATMATH_regemlist* Tlvl ;

MATMATH_regemlist Tlv2 ;

MATMATH_regemat T1v3 ;

MATMATH_regemlist* T1v4 ;

MATMATH_regemlist T1v5 ;

{
int i ;

MATMATH_regemat T2vO ;

MATMATH_regemat T2vl ;

MATMATH_regemat T2v2 ;
{

i= I;

for (; ;)
{

if (i>lO) break;

{

MATMATH_IMUL(a, b, _T2vl);

MATMATH_IMUL(b, a, kT2v2);

MATMATH_ISUB(&T2vl, &T2v2, &T2vO) ;

MATMATH_IASSN(c, &T2vO) ;

}

i = i + I;

}
}

MATMATH_ 1destruct or (&T2v2) ;

MATMATH_ Idestructor (_T2v I ) ;

MATMATH_ Idestructor (kT2vO) ;

}

MATMATH_2MST(c, aTlv2) ;

MATMATH_2MST(a, aTlv5) ;

MATMATH_2MEL(&TIv5, b, &Tlv4);

MATMATH_IMND(TIv4, aT1v3) ;

MATMATH_2MRO(&Tlv2, &T1v3, _T1vl) ;

MATMATH_IMND(TIvl, &TlvO) ;

MATMATH_IASSN(c, &TlvO) ;

MATMATH_3destructor(_TlvS);

MATMATH_ldestructor(&Tlv3);

MATMATH_3destructor(_Tlv2);

MATMATH_Idestructor(_TlvO);

return(kc_X_NO_ERROR);

}

function "[":sp(i: integer)

return list: respmatlist;

Parallel Computation
Since Caesy has been developed primarily to explore

ways in which to increase computational throughput

for control design tools, it is only natural to pursue the

possibilities of parallel computation. Several worksta-

tions and hardware co-processor boards with multiple

processors are currently available on the market. Ilow

to best support these multiprocessor environments will

most likely depend on which machine and operating

system we run under. Currently, Mach derivatives and

Solaris have support for rnulti-tbreaded programming

at the C language level

Conclusion

In this report we have provided a glimpse of a now

software environment., Caesy, which will be used for the

development of algorithms and software for 1he design

of large, complex control systems. The tool provides a

"next-generation" approach to control systom design

by taking advantage of some concept.s from object-

oriented programming languages. The tool should

prove to provide a means for easily handling large, com-

plex design problems. It is also being used as a "com-

putational engine" in a tool for integrated (conceptual)

design of advanced optical systems.
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